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The existence of rotating accelerator-mode islands �RAIs�, performing quasiregular motion in rotational
resonances of order m�1 of the standard map, is firmly established by an accurate numerical analysis of all the
known data. It is found that many accelerator-mode islands for relatively small nonintegrability parameter K
are RAIs visiting resonances of different orders m�3. For sufficiently large K, one finds also “pure” RAIs
visiting only resonances of the same order, m=2 or m=3. RAIs, even quite small ones, are shown to exhibit
sufficient stickiness to produce an anomalous chaotic transport. The RAIs are basically different in nature from
accelerator-mode islands in resonances of the “forced” standard map which was extensively studied recently in
the context of quantum accelerator modes.
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I. INTRODUCTION

During the last three decades, the classical concept of
“accelerator mode” �AM� has become of central importance
in the theory of chaotic transport in Hamiltonian systems
�1–17�. Recently, this concept has also provided an illumi-
nating explanation �18–20� for a purely quantum accelera-
tion of kicked atoms falling under gravity, observed in atom-
optics experiments �21–23�. AMs are generalized periodic
orbits �POs� of Hamiltonian maps having a translational
symmetry in phase space. A paradigmatic example is the
standard map �1�

M: pt+1 = pt + K sin�xt�, xt+1 = xt + pt+1 mod�2�� ,

�1�

where p is the angular momentum, x is the angle, K is a
nonintegrability parameter, and t is the “integer” time. The
map �1� and its orbit structure are translationally invariant in
p with period 2� on the cylindrical phase space −�� p
��, 0�x�2�. This allows one to define consistently a PO
of �minimal� period n of �1� in a generalized fashion:

pt+n = pt + 2�w, xt+n = xt, �2�

where w is an integer, the “jumping index.” For w=0, Eq. �2�
corresponds to a usual �closed� PO on the cylinder while for
w�0 the PO is an AM with average acceleration 2�w /n per
map iteration. If the AM is stable, its n points are surrounded
by islands. Stickiness to the boundaries of AM islands can
lead to a superdiffusion of the chaotic motion, �pt

2�� t�, 1
���2 �8–13�, where �¯� denotes ensemble average in the
chaotic region.

AMs can arise only for sufficiently large K, K�Kc
�0.9716, when no rotational tori exist �24� and unbounded
motion in the p direction becomes then possible. Thus, AM
islands are basically different in nature from the well-known
rotational-resonance islands which exist for arbitrarily small
K. The latter islands form the most basic component of or-
dered and stable motion in the twist map �1�. They are asso-
ciated with the closed �w=0� “Poincaré-Birkhoff” or “or-
dered” POs �25,26� which are dynamically equivalent to pure
rotations—i.e., the K=0 POs—and emerge from them as K is
“switched on” �25�. Despite the difference above, however,

one may expect from the following general arguments the
existence of an interesting kind of AM islands, resembling
rotational-resonance islands in some aspects.

It is known �27� that rotational resonances for the stan-
dard map �and similar maps �28,29�� can be constructed in a
well-defined way for all K; a resonance of order m is a chain
of m “zones” built on a hyperbolic ordered PO of period m
�see more details in Sec. II�. Strong numerical evidence �27�
and exact results �28,30� indicate that for K�Kc the reso-
nances so constructed give a partition of phase space. This
implies that an arbitrary orbit of �1� consists of quasiregular
segments within resonances, where each segment is a piece
of the orbit performing a number of rotations in one reso-
nance �31,32�. Now, a general stability island must lie en-
tirely in some resonance zone �17� and will thus perform a
similar quasiregular motion within resonances. Clearly, the
rotational quasiregularity is evident only when the island vis-
its resonances of order m�1. AM islands visiting m�1
resonances are most interesting objects since they exhibit a
“hybrid” nature: In some time intervals, they rotate like m
�1 resonance islands in a near-integrable regime �K	1�
and at other times they accelerate due to particular transitions
between resonances occurring only for K�Kc. We thus call
these islands, if they exist, “rotating accelerator-mode is-
lands” �RAIs�. The RAIs should have a distinct impact on
Hamiltonian transport by generating a new kind of chaotic
flight, featuring a quasiregular steplike structure due to the
“horizontal” rotation within resonances. General ideas in
Ref. �17� were illustrated only for the most well-known AM
islands of the standard map, those with central period n=1
which emerge for K�2� �1,3,4�. These islands lie within
m=1 resonances �17�. The question of the actual existence of
RAIs was not addressed in Ref. �17�.

In this paper, the existence of RAIs in the standard map is
firmly established by an accurate numerical analysis, exam-
ining also all the known data on AM islands of which we are
aware. In this analysis, the sequence of resonances visited by
an orbit is determined by using the efficient method intro-
duced in Ref. �32�. A large fraction of the AM islands for
K�2�, listed in Ref. �4�, are found to be RAIs visiting
resonances of different orders m�3. Some of the significant
peaks in the chaotic-diffusion coefficient observed in Ref. �4�
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for K�2� are due to RAIs. Among all the period-2 AM
islands for 2��K�20, listed in Ref. �3�, we have found
RAIs visiting resonances of the same order m=2 �“pure” m
=2 RAIs�. We discover at K�8.916 an apparently new AM
island, a pure m=3 RAI. It is shown that even quite small
RAIs exhibit sufficient stickiness to produce an anomalous
chaotic transport. Due to limitations in our available compu-
tational resources, we were not able to find RAIs visiting
resonances of order m�3.

The paper is organized as follows. In Sec. II, we briefly
summarize the notion of rotational quasiregularity within
resonances. In Sec. III, the existence of RAIs is established
by an accurate determination of the quasiregularity charac-
teristics of many AM islands. In Sec. IV, we briefly study
some of the effects of RAIs on Hamiltonian chaotic trans-
port. A discussion and conclusions are presented in Sec. V,
where we also consider the basic difference between RAIs
and AM islands visiting resonances of the “forced” standard
map �map �1� with the addition of a constant force�, which
has attracted much attention recently in the context of “quan-
tum AMs” �18–20,22,23�.

II. ROTATIONAL RESONANCES AND
QUASIREGULARITY

We briefly summarize here the definition of rotational
resonances for the standard map �27� and the notion of qua-
siregularity within these resonances �17,31,32�. Let us first
recall the concept of rotationally ordered POs �26�. In the
pure-rotation case of K=0, with constant pt= p0, the se-
quence of orbit angles xt is given by xt=x0+ p0t mod�2��.
For rational winding number 
= p0 / �2��= l /m, where �l ,m�
are coprime integers, the orbit must be a PO with period m;
the m PO points are uniformly distributed on the circle �0,
2��—i.e., the “gap” Gt between xt and a neighboring point
has the constant width 2� /m, independent of t. The rota-
tional motion on the circle is expressed by the fact that Gt+1
is also a gap, always separated from Gt by �l�−1 gaps. Now,
for K�0, the winding number 
 for a closed �w=0� PO is
the average value of pt / �2�� and 
 is again rational. A gap is
a pair of PO points having neighboring values of xt in the
circle. Then, a rotationally ordered PO is a closed PO having
the two main characteristics of a K=0 PO: �a� 
= l /m, where
m is the PO period and �l ,m� are coprime. �b� If Gt is a gap,
Gt+1 is also a gap, always separated from Gt by �l�−1 gaps.
Unlike the case of K=0, however, the gap width generally
depends on t.

An ordered hyperbolic PO with arbitrary winding number

= l /m exists for all K �26�. One gap of this PO—say,
G0—appears to be always symmetrically positioned around
the “dominant” symmetry line x=�—i.e., �−xL=xR−�,
where L and R denote the left and right points, respectively,
of G0. The l /m resonance is now defined, briefly, as follows
�see more details in Refs. �17,27� and refer to the examples
in Fig. 1�. One constructs in G0 a closed region Z�0��l /m�
bounded by four curved segments, which are suitably chosen
pieces of the stable and unstable manifolds of L and R under
the map Mm; for example, Z�0��0/1� is the region LERF
bounded by solid lines in Fig. 1. The l /m resonance is then

the chain of m zones Z�t��l /m�=M−tZ�0��l /m�, t=0, . . . ,m
−1; see, e.g., resonances 0/1 and 1/2 in Fig. 1. Clearly, the
zone Z�m��l /m�=M−mZ�0��l /m� lies again in G0 and differs
from the “principal” zone Z�0��l /m� by two turnstiles created
by homoclinic oscillations under M−m; for example, in Fig. 1
the lower �upper� turnstile of 0 /1 is the region bounded by
the dashed-line segment FBH �GAE� and the solid line. Each
turnstile consists of two lobes of equal area. By construction,
the lobes outside �inside� Z�0��l /m� form the region entering
�exiting� resonance l /m in one iteration of M.

Strong numerical evidence �27,32� and exact results
�28,30� indicate that for K�Kc�0.9716 the resonances con-
structed as above give, for all l /m, a complete partition of
phase space. This implies that a generic orbit must have all
its points within resonances and must therefore perform a
quasiregular motion as follows. An initial orbit point in, say,
resonance l /m will “rotate,” jumping from zone Z�t��l /m� in
gap Gt to zone Z�t+1��l /m� in gap Gt+1, until it will arrive at
Z�0��l /m�. If it does not lie in an exiting turnstile lobe, it will
rotate again, returning to Z�0��l /m� after m iterations. If, on
the other hand, it lies in an exiting turnstile lobe, more pre-
cisely in the overlap of this lobe with an entering turnstile
lobe of resonance l� /m� �such overlaps are the shaded re-
gions in Fig. 1�, it will escape to zone Z�m�−1��l� /m�� of
l� /m�; it will then perform at least a finite number of rota-
tions �of m� iterations each� in l� /m� before escaping to an-
other resonance. Thus, the orbit is a sequence of quasiregular
segments, each lying in some resonance lr /mr, −��r��,
and having a length of qrmr iterations, where qr is the num-
ber of rotations performed in lr /mr. We then say that the orbit
is of quasiregularity type �= . . . , �lr /mr�qr

, �lr+1 /mr+1�qr+1
. . .

�31,32�. As an example, Fig. 1 shows five orbit points, la-

0 0.2 0.4 0.6 0.8 1

−0.4

0

0.4

0.8

x/2π

p/
2π

L’

A’

G’

F’

L

H’

B’

R

B

F

H

R’

E’

A

E

G

2

1

3

5 4

FIG. 1. Solid lines: resonances 0/1 �region LERF� and 1/2
�with principal zone L�E�R�F�� for K=2.63894. The dashed-line
segments FBH and GAE form, together with the corresponding
solid-line segments, the lower and upper turnstiles, respectively, of
0 /1 and similarly for the turnstiles of 1 /2. The shaded regions are
the overlaps of the upper turnstile of 0 /1 with the lower turnstile of
1 /2. Also shown are five orbit points labeled by the time index t
=1, . . . ,5. Since point 3 lies in 0/1 within a turnstile overlap, its
iterate �point 4� lies in zone 1 of 1/2.
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beled by t=1, . . . ,5, in two consecutive quasiregular seg-
ments �0/1�3 and �1/2�1.

In the case that the orbit is a PO—i.e., it satisfies Eq.
�2�—its type can be written in a more compact form �17,31�.
Clearly, a PO can visit only a finite number �d� of resonances
on the torus 0�x, p�2� �by taking also pt modulo 2� in
�1��. Thus, on the cylinder, it will generally visit a set of d
resonances 	lr /mr
r=1

d and all the translates 	lr /mr+bw�
r=1
d of

this set in the p direction, where b takes all the integer values

and w� is some integer related to w; see below. The type � of
the PO must be then essentially the repetition of a “block” �,
�= . . . ,��−w�� ,��0� ,��w�� ,��2w�� , . . ., where ��bw��
= �l1 /m1+bw��q1

, . . . , �ld /md+bw��qd
. If the periodic cycle is

completed exactly after visiting one block, one has w=w�

and the period n=n�=�r=1
d qrmr. Generally, however, the pe-

riodic cycle is completed only after visiting more than one
block—say, c blocks. Then, w=cw� and n=cn�. The type �
of the PO will be thus specified by �� ;w� ,c�, where �

TABLE I. Quasiregularity type �= �� ;w� ,c� of AM island chains for Kc�K�2�. The period n, jumping
index w, and initial conditions �x0 , p0� are also shown.

K �= �� ;w� ,c� n w �x0 , p0� / �2��

1 2.1834 (�0/1�3 , �1/3�1 , �1/2�1 , �2/3�1 ;1 ,1) 11 1 �0.097, 0.0�
2 2.374 (�0/1�3 , �1/2�1 ;1 ,1) 7 1 �0.1085, 0.0�
3 2.55097 (�0/1�4 , �1/2�1 , �1/1�3 , �3/2�1 ;2 ,1) 11 2 �0.102632, 0.0�
4 2.5875 (�0/1�3 , �1/2�1 ;1 ,1) 5 1 �0.098, 0.0�
5 2.58867 (�0/1�3 , �1/2�1 ;1 ,2) 10 2 �0.099, 0.00151�
6 2.63894 (�0/1�3 , �1/2�1 ;1 ,1) 5 1 �0.105, 0.0�
7 2.975 (�0/1�2 , �1/2�1 ;1 ,1) 4 1 �0.33445, 0.4�
8 2.9845 (�0/1�2 , �1/2�1 ;1 ,2) 8 2 �0.344, 0.412�
9 3.34579 (�0/1�9 , �1/2�1 ;1 ,1) 11 1 �0.3851, 0.0�
10 3.50287 (�0/1�5 , �1/2�1 ;1 ,1) 7 1 �0.64, 0.0�
11 3.61283 (�0/1�9 , �1/3�1 , �1/1�2 , �5/3�1 ;2 ,1) 17 2 �0.336347, 0.0�
12 3.76991 (�0/1�5 , �1/2�1 ;1 ,1) 7 1 �0.6195, 0.0�
13 3.78247 (�0/1�3 , �1/1�2 ;2 ,1) 5 2 �0.0667, 0.0�
14 3.80761 (�0/1�3 , �1/1�2 ;2 ,1) 5 2 �0.07, 0.0�
15 4.141 (�0/1�1 , �1/2�1 ;1 ,1) 3 1 �0.285, 0.0�
16 4.66526 (�0/1�1 , �1/2�1 ;1 ,1) 3 1 �0.34805, 0.0�
17 5.02654 (�0/1�3 , �1/1�1 , �2/1�2 , �3/1�1 ;4 ,1) 7 4 �0.04432, 0.0�
18 5.12079 (�0/1�2 , �1/1�1 ;2 ,1) 3 2 �0.277, 0.0�
19 5.32499 (�0/1�3 , �1/1�2 ;2 ,1) 4 2 �0.055, 0.0�
20 5.41924 (�0/1�2 , �1/1�2 , �2/1�1 ;3 ,1) 5 3 �0.338162, 0.0�
21 5.45066 (�0/1�2 , �1/1�1 ;2 ,2) 6 4 �0.22265, 0.0�
22 5.51663 (�0/1�2 , �1/1�1 ;2 ,1) 3 2 �0.334, 0.0�
23 5.79623 (�0/1�6 , �1/1�1 ;2 ,1) 7 2 �0.3255, 0.0�
24 6.173229 (�0/1�3 , �1/1�1 , �2/1�1 , �3/1�1 ;4 ,1) 6 4 �0.0286, 0.0�

TABLE II. Quasiregularity type �= �� ;w� ,c� of AM island chains for 2��K�20. Also shown are the
period n, the jumping index w, and the stability interval �K1 ,K2� of the island chain with corresponding initial
conditions �x0 , p0� for K=K1,2.

�= �� ;w� ,c� n w K1 �x0 , p0� / �2��, K=K1 K2 �x0 , p0� / �2��, K=K2

1 (�0/1�1 ;1 ,1) 1 1 6.28319 �0.2500, 0.0� 7.44840 �0.34059, 0.0�
2 (�0/1�1 ;1 ,2) 2 2 7.44840 �0.34059, 0.0� 7.71340 �0.3845, 0.0928�
3 (�1/2�1 ;1 ,1) 2 1 8.67893 �0.27999, 0.321577� 8.68826 �0.28696, 0.32717�
4 (�1/3�1 ;1 ,1) 3 1 8.91596 �0.934594, 0.6522� 8.91603 �0.934641, 0.651819�
5 (�0/1�1 ;2 ,1) 1 2 12.56638 �0.2500, 0.0� 13.1876 �0.2990, 0.0�
6 (�0/1�1 ;2 ,2) 2 4 13.1876 �0.2990, 0.0� 13.33848 �0.3233, 0.0494�
7 (�1/2�1 ;2 ,1) 2 2 15.2394 �0.268606, 0.295564� 15.24126 �0.270938, 0.29762�
8 (�0/1�1 ;3 ,1) 1 3 18.84956 �0.2500, 0.0� 19.26929 �0.2832, 0.0�
9 (�0/1�1 ;3 ,2) 2 6 19.26929 �0.2832, 0.0� 19.3728 �0.2998, 0.0333�
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stands, e.g., for ��0�. The average acceleration per iteration
is 2�w /n=2�w� /n�.

III. ROTATING ACCELERATOR-MODE ISLANDS

If a period-n PO is stable, each of its n points is the
“center” of an island in a chain of n islands. As shown in
Ref. �17�, an island must lie entirely within the zone of some
resonance l /m. If this zone is the principal one, Z�0��l /m�,
the island will be either outside the turnstiles or completely
within the turnstile overlap �TO� of l /m with another reso-

nance l� /m� �17�. Thus, the island will always lie entirely in
the basic region �resonance zone �outside the turnstiles� or
TO� where its center lies, so that one can characterize the
island chain by the type �� ;w� ,c� of its central PO. For
example, the well-known period-1 AM islands arising for
K�2� �w� �1,3,4� must all lie within first-order �m=1� reso-
nances and their type is �= (�0/1�1 ;w ,1); this is because n
=cn�=c�r=1

d qrmr implies, for n=1, that c=d=q1=m1=1.
Since the fraction of phase space occupied by the m=1 reso-
nances approaches 100% as K increases �27� and is already
significant for K�Kc, it is natural to ask about the existence
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FIG. 2. Regions bounded by solid lines: resonances 0/1, 1 /3,
1 /2, and 2/3 �in ascending order� for K=2.1834. The dashed lines
define the resonance turnstiles. The points �solid circles� give the
central PO of the AM island chain No. 1 in Table I; this is a RAI
chain. The arrow indicates a point to which we shall refer in the
caption of Fig. 6.
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FIG. 3. Regions bounded by solid lines: resonances 1/2 and 3/2
for K=8.68. The dashed lines define the resonance turnstiles. The
four points, labeled by the time index t=1, . . . ,4, give the central
PO and its iterate for the AM island chain No. 3 in Table II; this is
a pure RAI chain.
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FIG. 4. Regions bounded by solid lines: resonances 1/3 and 4/3
for K=8.916. The dashed lines define the resonance turnstiles. The
six points, labeled by the time index t=1, . . . ,6, give the central PO
and its iterate for the AM island chain No. 4 in Table II; this is a
pure RAI chain.
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FIG. 5. Regions bounded by solid lines: resonances 1/2, 3 /2,
and 5/2 for K=15.24035. The dashed lines define the resonance
turnstiles. The four points, labeled by the time index t=1, . . . ,4,
give the central PO and its iterate for the AM island chain No. 7 in
Table II; this is a pure RAI chain. Point 2 in 1/2 is mapped into
point 3 in 5/2 by turnstile overlap, “jumping over” 3/2; this leads
to w=2.
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of RAIs—i.e., AM islands visiting resonances of order m
�1.

To answer this question, we have carefully examined all
the data on standard-map AM islands of which we are aware.
Most of these data appear in Refs. �3,4,14�; apparently new
AM islands have been also considered. The type of an island
chain or of its central PO was accurately determined by using
the efficient method introduced in Ref. �32�. Briefly, this
method is based on the fact, proven in Ref. �32�, that one can
always find a sawtooth map Ms �i.e., the map �1� with sin�x�
replaced by a sawtooth function and with K replaced by a
properly chosen parameter Ks� such that for each orbit O of
M there exists an orbit Os of Ms visiting the same resonances
as those visited by O. Since the boundaries of the resonances
of Ms are given by simple analytic expressions �28�, this
allows one to determine the type of O without calculating the
complicated resonance boundaries of M.

Our results are presented in Tables I and II. In Table I, we
give the type � of many AM island chains for Kc�K�2�.
These chains, most of which appear in Table I in Ref. �4�,
were chosen in a well-defined and natural way; i.e., they

have at least one island lying on p=0 �see also next section�,
except for chains Nos. 7 and 8 which are given for future
reference. Initial conditions �x0 , p0� within the islands are
specified, as well as the values of K, n, and w. We see that
more than half of these island chains �Nos. 1–12, 15, and
16�, mostly at the smaller values of K, are RAIs visiting
resonances of order m=2 and/or m=3. The central PO for
RAI No. 6, with n=5 and w=1, consists of the five points
shown in Fig. 1. As another example, we show in Fig. 2 the
n=11 points of the central PO for RAI No. 1, with w=1,
together with the four resonances visited, l /m
=0/1 ,1 /3 ,1 /2 ,2 /3 �solid lines�, and their turnstiles �dashed
lines�. RAI No. 5, with n=10, emerges by period-doubling
bifurcation from RAI No. 4 with n=5. This is reflected in the
fact that the types of RAIs Nos. 4 and 5 have the same basic
block � but c=w=2 for RAI No. 5, in contrast with c=w
=1 for RAI No. 4. Similarly, RAI No. 8, with n=8, emerges
by period-doubling bifurcation from RAI No. 7 with n=4.

In Table II, we give the type � of AM islands with n
=1,2 ,3 for 2��K�20. Most of these islands, those with
n=1,2, were selected from Table I in Ref. �3�. As in that

FIG. 6. �a� RAI surrounding the point indicated by an arrow in Fig. 2, K=2.1834; �b� RAI surrounding point 1 in Fig. 3, K=8.68; �c� RAI
surrounding point 2 in Fig. 4, K=8.916; �d� RAI surrounding point 1 in Fig. 5, K=15.24035.
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work, we give in Table II the stability interval �K1 ,K2� of
each island and corresponding initial conditions �x0 , p0� for
K=K1,2; the values of n and w are also shown. Islands Nos.
2, 6, and 9 emerge by period-doubling bifurcation from is-
lands Nos. 1, 5, and 8, respectively. All these islands lie in
m=1 resonances. The only AM islands that we were able to
identify as RAIs in this K interval are Nos. 3, 4, and 7. These
RAIs are “pure;” i.e., they visit resonances of the same order
m=2 �RAIs Nos. 3 and 7� or m=3 �RAI No. 4�. The latter
RAI is apparently a new AM island. Figures 3–5 show the n
points �xt , pt�, t=1, . . . ,n, of the central PO for each of these
pure RAIs, together with the resonances visited �solid lines�
and their turnstiles �dashed lines�. As one can see, the tran-
sition from resonance 1/m to resonance 1/m+w takes place
only when a PO point lies in the TO of these resonances.
This transition causes the acceleration.

RAIs can be very small islands. As examples, we show in
Fig. 6 one island of each of the RAI chains to which we refer
in Figs. 2–5.

IV. CHAOTIC TRANSPORT IN THE PRESENCE OF RAIs

We now briefly study the effect of RAIs on chaotic trans-
port. Given an ensemble E of initial conditions �x0 , p0� in
phase space for K�Kc, the transport of E is usually mea-
sured by the time evolution of ��pt− p0�2�E, where �¯�E
denotes average over E. In the absence of AM islands, with E
lying entirely within the connected chaotic region,
��pt− p0�2�E�2Dt for large t, where D is the chaotic-
diffusion coefficient �1�. In Ref. �4�, E was naturally
chosen as a physical ensemble of well-defined angular mo-
mentum p= p0, 0�x0�2�, and the quantity
DE,t�K�= ��pt− p0�2�E / �2t� was calculated at fixed large t as a

function of K, for Kc�K�2�. Whenever an AM island
crosses the line p= p0 as K is varied, DE,t�K� exhibits “bal-
listic” peaks; see Fig. 7 for p0=0 and Ref. �4�. The AM
islands on p=0 in Table I were determined in this way. Some
of the most significant peaks in Fig. 7 are due to RAIs—e.g.,
RAIs Nos. 6–8, 10, 15, and 16. In particular, the peak due to
RAI No. 16 is relatively broad in K.

If E is an ensemble lying entirely within the connected
chaotic region and there exist AM islands exhibiting suffi-
cient stickiness, one observes an anomalous, superdiffusive
chaotic transport ��pt− p0�2�E� t� with anomalous exponent
�, 1���2 �8–13�. As far as we are aware, this anomalous
transport in the standard map was observed only for AM
islands whose central PO has period n=1 �such as islands
Nos. 1, 5, and 8 in Table II� or satellites of these islands. All
these islands lie in m=1 resonances and are not RAIs.

To show that RAIs affect chaotic transport, we consider,
as a first example, the case of RAI No. 7 in Table I
�K=2.975�; see Fig. 8. The ensemble E consists of the points
�x0 , p0� with p0=0 and x0 taking 105 values uniformly dis-
tributed in �0,2��. This ensemble is chaotic with the excep-
tion of �20% of it lying in ordinary �non-AM� islands
within the 0/1 resonance. The only source of anomalous
transport can be stickiness to the boundary of the RAI above,
since no other AM islands seem to exist for K=2.975. To
verify that this RAI boundary is indeed sticky, we have iter-
ated the ensemble t=104 times and plotted only the points
(xt� , pt� mod�2��), for all t�� t and with pt / �2���100;
since the RAI has central period n=4, pt / �2�� cannot be
larger than t /4=2500. The results are shown in the inset of
Fig. 8, and one can see a strong stickiness to the RAI bound-
ary. As a consequence, we observe a clearly superdiffusive
chaotic transport with anomalous exponent ��1.28; see Fig.
9.

As other examples, we have considered the much smaller
RAIs shown in Figs. 6�b�–6�d�. To verify the stickiness to
the boundary of these RAIs, we first chose E as a chaotic

1 2 3 4 5 6
0
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2

3

4

K

D
/D

ql

FIG. 7. Plot of DE,t�K� /Dql for t=500 and K� �1,2�� �K=5
�10−3�, where Dql=K2 /4 is the quasilinear diffusion coefficient.
The ensemble E consists of the points �x0 , p0� with p0=0 and x0

taking 20000 values uniformly distributed in �0, 2��. The peaks
indicated by arrows correspond to the RAIs Nos. 1, 3, 9, and 12 in
Table I and were produced using t=20000 iterations and a finer grid
in both K and x0.

1

2

4

3

FIG. 8. Solid lines: resonances 0/1 and 1/2 for K=2.975.
Shown is the RAI chain No. 7 in Table I, labeled by the time index
t=1, . . . ,4. A magnification of island No. 1 appears in the inset,
showing strong stickiness of chaotic orbits to the RAI boundary.
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ensemble in the close neighborhood of the RAI; see details
in the caption of Fig. 10. The time evolution of
�pt− p0�E / �2�� was then calculated for sufficiently large t;
the results are shown in Fig. 10. We see that in a significant
time interval �e.g., t�100 in Fig. 10�b��, �pt− p0�E / �2��
evolves essentially as if E were concentrated inside the RAI;
i.e., it exhibits the steplike structure due to rotation in m=2
resonances �see inset of Figs. 10�a� and 10�c�� or in m=3
resonances �see inset of Fig. 10�b�� and its initial average
slope is �w /n. This is clear evidence for stickiness to the
RAI boundary, leading to chaotic flights. In the course of
time, more and more points of the ensemble leave the RAI
boundary and enter the chaotic region. Then, �pt

− p0�E / �2�� starts to saturate around some constant value
which should correspond to the center of a Gaussian distri-
bution describing normal chaotic diffusion. The saturation
value of �pt− p0�E / �2�� in Fig. 10�c� is much larger than that
in Figs. 10�a� and 10�b� due to the relatively large value of
w /n=1 and to the much stronger stickiness, as one can see
by comparing Fig. 6�d� with Figs. 6�b� and 6�c�.

V. DISCUSSION AND CONCLUSIONS

In this paper, we have established the existence of a most
interesting kind of stability island in the standard map, the
RAI, exhibiting two diametrically opposite dynamical behav-
iors: The rotational motion, characteristic of the integrable
�K=0� case, and the acceleration which emerges only in the
global-chaos regime of K�Kc�0.9716. As indicated by
Table I, RAIs appear to be abundant for sufficiently small
K�Kc but they also exist in strong-chaos regimes �Table II�,
where m�1 resonances are quite small and essentially all
phase space is occupied by m=1 resonances. For large K
�2�, it is possible to have turnstile overlap between reso-
nances of the same order—e.g., resonances 1/m and 1/m
+w—and pure RAIs can then arise; see Figs. 3–5. If the map
�1� is restricted to the torus T2 :0�x, p�2�, by taking also
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FIG. 9. Solid line: log-log plot of �pt
2�E for K=2.975 �see more

details in the text�. Dashed line: linear fit to the solid line, with
slope ��1.28.

1000 7000 13000 19000

5

15

25

35

45

t

〈p
t−

p 0〉/2
π

1 3 5 7 9

1

2

3

4

(a)

0 100 200 300

5

10

15

20

25

t

〈p
t−

p 0〉/2
π

5 10 15 20 25

1

3

5

7

9

(b)

2000 9000 16000 23000

50

150

250

350

450

550

t

〈p
t−

p 0〉/2
π

2 4 6 8 10 12 14
1

3

5

7

9

11

13

15

(c)

FIG. 10. Time evolution of �pt− p0�E / �2��, where E is an en-
semble of chaotic initial conditions �ICs� �x0 , p0� extracted from a
grid covering the graph region of �a� Fig. 6�b� �19276 chaotic ICs
out of 26867�, K=8.68; �b� Fig. 6�c� �15639 chaotic ICs out of
21600�, K=8.916; �c� Fig. 6�d� �10693 chaotic ICs out of 11788�,
K=15.24035. The inset in �a�, �b�, and �c� shows a magnification of
the first iterates with average slope �w /n=1/2, 1 /3, and 1, respec-
tively. The steplike structure due to the stickiness to the boundaries
of the pure RAIs is quite evident in all cases.
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pt modulo 2�, pure RAIs look precisely like rotational-
resonance islands in a near-integrable regime �K	1�. Sticki-
ness to the boundary of RAIs, especially of pure RAIs, leads
to chaotic flights featuring a quasiregular steplike structure
due to the rotational motion within resonances; see Fig. 10.
Such a quasiregular structure was observed recently �15� in
the weak-chaos regime of a perturbed pseudochaotic map.
We have shown here that it also occurs in strong-chaos re-
gimes. It would be most interesting if one could establish the
existence of pure RAIs of very large order m. Such RAIs
may give rise to chaotic flights with significantly long qua-
siregular steps; these flights were shown to occur for the
system studied in Ref. �15�.

We now discuss possible quantum manifestations of RAIs
which may be observed experimentally. Let us start with
some background. The classical concept of AM islands was
used recently �18–20� to explain a purely quantum accelera-
tion of kicked atoms falling under gravity, observed in atom-
optics experiments �21–23�. This acceleration takes place for
parameter values near quantum resonances, corresponding to
relatively large values �0 of a scaled Planck’s constant �, far
from the semiclassical regime �see �33��. Nevertheless, it was
shown �18� that �=�0+� defines, for sufficiently small �, a
“quasiclassical” �or “pseudoclassical”� regime in which �
plays the role of a fictitious Planck’s constant; in this regime,
the exact quantum dynamics for a cosinusoidal kicking po-
tential can be approximately described by the classical map

M�: pt+1 = pt + K sin�xt� + 2��, xt+1 = xt

+ pt+1 mod�2�� . �3�

This is the “forced” standard map �34,35�, with the constant
“force” � related to gravity. Then, wave packets initially
trapped in AM islands of the map �3� for small � lead to
“quantum AMs” �QAMs�—i.e., the purely quantum accelera-
tion observed. This theoretical prediction in Ref. �18� was
verified by various experiments �22,23�, and a multitude of
high-order QAMs with different winding numbers w /n were
observed �23�.

For �=0, the map �3� reduces to the standard map, which
describes the quasiclassical regime �=�0+� in the absence

of gravity �36�. As far as we are aware, QAMs in this case
have not been yet observed experimentally, apparently due to
the much focus on the ��0 case until now. However, the
�=0 QAMs are most interesting to study since they are
basically different in nature from the ��0 ones, due to the
difference between the AM islands in the two cases. This
difference can be seen most clearly by comparing the RAIs
for �=0 with AM islands visiting resonances of the map �3�
for ��0. Consider, for simplicity, the case of integer �
�0 �the arguments below can be easily extended to the case
of general rational �, treated in Refs. �19,20��. In this case,
M� and the standard map obviously coincide if both maps
are restricted to the basic torus T2. Thus, for sufficiently
small K, there exist islands in rotational resonances l /m of
M� on T2. On the cylinder, such an island corresponds to an
AM island: In one iteration of the map �3�, the island in zone
Z�t��l /m�, t=0, . . . ,m−1, will accelerate by jumping to zone
Z�t+1��l /m+�� of resonance l /m+�� l /m.

In the case of �=0, on the other hand, a RAI in resonance
l /m, m�1, will remain �rotate� in l /m for at least m �or a
multiple of m� iterations before jumping to resonance l /m
+w. The rotational motion of RAIs in resonances is not fea-
tured by the AM islands above of M�. This quasiregularity
of RAIs will have very clear quantum manifestations in the
corresponding QAMs in a quasiclassical regime. QAMs on
RAIs should be experimentally observable using atom-optics
techniques, at least for small K�Kc and relatively large
RAIs, such as the RAI shown in Fig. 8. By introducing non-
accelerating quasiregular segments in the QAM, one can
control the quantum motion of atoms in a way which is not
possible for ��0. The characterization of QAMs by the
type �= �� ;w� ,c� is much more detailed than the standard
one given by the winding number w /n, used until now in
QAM spectroscopy �23�.
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